Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Acoust Soc Am ; 155(3): 2014-2024, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38470188

RESUMEN

Hypoxia in coastal ecosystems is increasing as a result of water quality declines from nutrient pollution. Hypoxia negatively affects fish populations and marine life, limiting their spawning habitats, population size, and growth. In this study, two approaches were used to understand the effect of hypoxia on the chorusing and reproductive behavior of fishes in estuaries. One approach used a water quality meter integrated with a prototype passive acoustic recorder, developed to monitor dissolved oxygen and fish chorusing simultaneously and continuously at sites with normoxic and hypoxic conditions. In a second approach, passive acoustic recorders were deployed near ambient water quality monitoring stations, monitored by the North Carolina agencies in estuaries where hypoxia occurs periodically. In both approaches, when hypoxia (dissolved oxygen < 4.0 mg/L) occurred, fish chorusing was diminished or ceased. A strong correlation was observed between bottom water dissolved oxygen and the power spectral density in a 100-200 Hz frequency band associated with red drum (Sciaenops ocellatus, Sciaenidae) calling. Passive acoustic monitoring stations and integrated passive acoustic and water quality meters should be used in estuarine hypoxia monitoring efforts to examine the expanding areas of hypoxia and its impact on fish critical spawning habitats.


Asunto(s)
Ecosistema , Peces , Animales , Hipoxia , Oxígeno , Acústica
2.
Water Res ; 249: 120817, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086207

RESUMEN

Water quality of eutrophic lakes is threatened by harmful cyanobacterial blooms, which are favored by summer heatwaves and expected to intensify with global warming. Societal demands on surface water for drinking, irrigation and recreation are also highest in summer, especially during dry and warm conditions. Here, we analyzed trends in online searches to investigate how public awareness of cyanobacterial blooms is impacted by temperature in nine different countries over almost twenty years. Our findings reveal large seasonal and interannual variation, with more online searches for harmful cyanobacteria in temperate regions during hot summers. Online searches and media attention increased even more steeply with temperature than the incidence of cyanobacterial blooms, presumably because lakes attract more people during warm weather. Overall, our study indicates that warmer summers not only increase cyanobacterial bloom incidence, but also lead to a pronounced increase of the public awareness of toxic cyanobacterial blooms.


Asunto(s)
Cianobacterias , Eutrofización , Humanos , Estaciones del Año , Calidad del Agua , Lagos/microbiología
3.
J Environ Manage ; 351: 119606, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081090

RESUMEN

Cyanobacterial harmful algal blooms (CHABs) have become a persistent seasonal problem in the upper San Francisco Estuary, California also known as the Sacramento-San Joaquin Delta (Delta). The Delta is comprised of a complex network of open water bodies, channels, and sloughs. The terminus of the Stockton Channel is an area identified as a CHAB "hotspot." As CHABs increase in severity, there is an urgent need to better understand CHAB drivers to identify and implement mitigation measures that can be used in an estuarine complex like the Delta. We investigated water quality conditions and nutrient dynamics in the Stockton Channel by measuring nutrients in the water column, sediments, and pore waters. In situ nutrient addition bioassay experiments were used to assess the effects of nutrient enrichment on total algal/cyanobacterial growth and pigment concentrations. In both June and September, relative to unamended controls, total chlorophyll and cyanobacterial pigment concentrations were unaffected by nutrient additions; hence, the study area showed signs of classical hypereutrophication, with ambient nitrogen and phosphorus present in excess of algal growth requirements. A cyanobacterial bloom, dominated by Microcystis spp. was present throughout the study area but was most severe and persistent at the shallowest site at the channel terminus. At this site, Microcystis spp. created water quality conditions that allowed for a prolonged bloom from June through September. While targeted nutrient reductions are recommended for long term mitigation, on a shorter timescale, our findings suggest that physical/mechanical controls are the more promising alternative approaches to reduce the severity of CHABs in the terminus of the Stockton Channel.


Asunto(s)
Cianobacterias , Microcystis , Floraciones de Algas Nocivas , Calidad del Agua , California , Lagos/microbiología , Eutrofización
4.
Water Res ; 250: 121010, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142507

RESUMEN

Cylindrospermopsin (CYN) can induce phytoplankton community to secrete alkaline phosphatase (ALP), which is one of the important strategies for the bloom-forming cyanobacterium Raphidiopsis to thrive in extremely low-phosphorus (P) waters. However, how bacterioplankton community, another major contributor to ALPs in waters, couples to Raphidiopsis through CYN, and the role of this coupling in supporting the dominance of Raphidiopsis in nature remain largely unknown. Here, we conducted microcosm experiments to address this knowledge gap, using a combination of differential filtration-based and metagenomics-based methods to identify the sources of ALPs. We found that, compared with algal-derived ALPs, bacteria-derived ALPs exhibited a more pronounced and sensitive response to CYN. This response to CYN was enhanced under low-P conditions. Interestingly, we found that Verrucomicrobia made the largest contribution to the total abundance of pho genes, which encode ALPs. Having high gene abundance of the CYN-sensing PI3K-AKT signaling pathway, Verrucomicrobia's proportion increased with higher concentrations of CYN under low-P conditions, thereby explaining the observed increase in pho gene abundance. Compared with other cyanobacterial genera, Raphidiopsis had a higher abundance of the pst gene. This suggests that Raphidiopsis exhibited a greater capacity to uptake the inorganic P generated by ALPs secreted by other organisms. Overall, our results reveal the mechanism of CYN-induced ALP secretion and its impact on planktonic P-cycling, and provide valuable insights into the role of CYN in supporting the formation of Raphidiopsis blooms.


Asunto(s)
Alcaloides , Cianobacterias , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Cianobacterias/metabolismo , Toxinas de Cianobacterias , Fósforo/metabolismo , Uracilo
5.
Environ Sci Pollut Res Int ; 30(40): 92379-92389, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37488385

RESUMEN

Water resource security directly or indirectly affects the development of society, economy, and the environment, and is of massive significance for regional sustainable development. This study addresses whether anthropogenic activities, especially from tourism, significantly affect the freshwater quality in Hainan Province, China. The freshwater quality in Hainan Province was generally good in 2012 to 2015 (at level II, GB3838-2002). Agriculture, fishery, animal husbandry, and chemical oxygen demand discharge mainly affect freshwater quality in the Nandu and Changhua rivers. Water quality in Wanquan River is more susceptible to tourism in comparison with the Nandu and Changhua rivers. DO content in the Wanquan River fluctuated greatly. It remains necessary to closely monitor negative changes in water quality due to increasing tourism, especially in Wanquan River and eastern Hainan Province. The developed radial basis function neural network shows that the changes in water quality are predicted accurately in comparison with experimental values in the present study. Our results suggested that current anthropogenic factors had a modest effect on water quality on Hainan Island, while tourism had a perceptible effect in eastern Hainan. Our findings provide a reference for the interplay of water quality, people's livelihood, and economic development (tourism and port construction) in Hainan Province.


Asunto(s)
Efectos Antropogénicos , Monitoreo del Ambiente , Animales , Ríos/química , China
6.
J Hazard Mater ; 451: 131160, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907061

RESUMEN

Global eutrophication and climate warming exacerbate production of cyanotoxins such as microcystins (MCs), presenting risks to human and animal health. Africa is a continent suffering from severe environmental crises, including MC intoxication, but with very limited understanding of the occurrence and extent of MCs. By analysing 90 publications from 1989 to 2019, we found that in various water bodies where MCs have been detected so far, the concentrations were 1.4-2803 times higher than the WHO provisional guideline for human lifetime exposure via drinking water (1 µg/L) in 12 of 15 African countries where data were available. MCs were relatively high in the Republic of South Africa (averaged 2803 µg/L) and Southern Africa as a whole (702 µg/L) when compared to other regions. Values were higher in reservoirs (958 µg/L) and lakes (159 µg/L) than in other water types, and much higher in temperate (1381 µg/L) than in arid (161 µg/L) and tropical (4 µg/L) zones. Highly significant positive relationships were found between MCs and planktonic chlorophyll a. Further assessment revealed high ecological risk for 14 of the 56 water bodies, with half used as human drinking water sources. Recognizing the extremely high MCs and exposure risk in Africa, we recommend routine monitoring and risk assessment of MCs be prioritized to ensure safe water use and sustainability in this region.


Asunto(s)
Toxinas de Cianobacterias , Agua Potable , Animales , Humanos , Agua Potable/análisis , Clorofila A , Monitoreo del Ambiente , Microcistinas/toxicidad , Microcistinas/análisis , Lagos
7.
J Plankton Res ; 45(1): 180-204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36751483

RESUMEN

Following the passage of a tropical cyclone (TC) the changes in temperature, salinity, nutrient concentration, water clarity, pigments and phytoplankton taxa were assessed at 42 stations from eight sites ranging from the open ocean, through the coastal zone and into estuaries. The impacts of the TC were estimated relative to the long-term average (LTA) conditions as well as before and after the TC. Over all sites the most consistent environmental impacts associated with TCs were an average 41% increase in turbidity, a 13% decline in salinity and a 2% decline in temperature relative to the LTA. In the open ocean, the nutrient concentrations, cyanobacteria and picoeukaryote abundances increased at depths between 100 and 150 m for up to 3 months following a TC. While at the riverine end of coastal estuaries, the predominate short-term response was a strong decline in salinity and phytoplankton suggesting these impacts were initially dominated by advection. The more intermediate coastal water-bodies generally experienced declines in salinity, significant reductions in water clarity, plus significant increases in nutrient concentrations and phytoplankton abundance. These intermediate waters typically developed dinoflagellate, diatom or cryptophyte blooms that elevated phytoplankton biomass for 1-3 months following a TC.

9.
Water Res ; 229: 119435, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481704

RESUMEN

Cyanobacterial blooms in freshwater systems are a global threat to human and aquatic ecosystem health, exhibiting particularly harmful effects when toxin-producing taxa are present. While climatic change and nutrient over-enrichment control the global expansion of total cyanobacterial blooms, it remains unknown to what extent this expansion reflected cyanobacterial assemblage due to the scarcity of long-term monitoring data. Here we use high-throughput sequencing of sedimentary DNA to track ∼100 years of changes in cyanobacterial community in hyper-eutrophic Lake Taihu, China's third largest freshwater lake and the key water source for ∼30 million people. A steady increase in the abundance of Microcystis (as potential toxin producers) during the past thirty years was correlated with increasing temperatures and declining wind speeds, but not with temporal trends in lakewater nutrient concentrations, highlighting recent climate effects on potentially increasing toxin-producing taxa. The socio-environmental repercussions of these findings are worrisome as continued anthropogenic climate change may counteract nutrient amelioration efforts in this critical freshwater resource.


Asunto(s)
Cianobacterias , ADN Antiguo , Humanos , Ecosistema , Cambio Climático , Eutrofización , Cianobacterias/genética , Lagos/microbiología , China
10.
Environ Microbiol Rep ; 15(1): 3-12, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36096485

RESUMEN

Billions of years ago, the Earth's waters were dominated by cyanobacteria. These microbes amassed to such formidable numbers, they ushered in a new era-starting with the Great Oxidation Event-fuelled by oxygenic photosynthesis. Throughout the following eon, cyanobacteria ceded portions of their global aerobic power to new photoautotrophs with the rise of eukaryotes (i.e. algae and higher plants), which co-existed with cyanobacteria in aquatic ecosystems. Yet while cyanobacteria's ecological success story is one of the most notorious within our planet's biogeochemical history, scientists to this day still seek to unlock the secrets of their triumph. Now, the Anthropocene has ushered in a new era fuelled by excessive nutrient inputs and greenhouse gas emissions, which are again reshaping the Earth's biomes. In response, we are experiencing an increase in global cyanobacterial bloom distribution, duration, and frequency, leading to unbalanced, and in many instances degraded, ecosystems. A critical component of the cyanobacterial resurgence is the freshwater-marine continuum: which serves to transport blooms, and the toxins they produce, on the premise that "water flows downhill". Here, we identify drivers contributing to the cyanobacterial comeback and discuss future implications in the context of environmental and human health along the aquatic continuum. This Minireview addresses the overlooked problem of the freshwater to marine continuum and the effects of nutrients and toxic cyanobacterial blooms moving along these waters. Marine and freshwater research have historically been conducted in isolation and independently of one another. Yet, this approach fails to account for the interchangeable transit of nutrients and biology through and between these freshwater and marine systems, a phenomenon that is becoming a major problem around the globe. This Minireview highlights what we know and the challenges that lie ahead.


Asunto(s)
Cianobacterias , Ecosistema , Humanos , Cambio Climático , Cianobacterias/fisiología , Agua Dulce/microbiología , Fotosíntesis
11.
Front Microbiol ; 13: 1044464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504786

RESUMEN

Harmful algal blooms (HABs) caused by the toxin-producing cyanobacteria Microcystis spp., can increase water column pH. While the effect(s) of these basified conditions on the bloom formers are a high research priority, how these pH shifts affect other biota remains understudied. Recently, it was shown these high pH levels decrease growth and Si deposition rates in the freshwater diatom Fragilaria crotonensis and natural Lake Erie (Canada-US) diatom populations. However, the physiological mechanisms and transcriptional responses of diatoms associated with these observations remain to be documented. Here, we examined F. crotonensis with a set of morphological, physiological, and transcriptomic tools to identify cellular responses to high pH. We suggest 2 potential mechanisms that may contribute to morphological and physiological pH effects observed in F. crotonensis. Moreover, we identified a significant upregulation of mobile genetic elements in the F. crotonensis genome which appear to be an extreme transcriptional response to this abiotic stress to enhance cellular evolution rates-a process we have termed "genomic roulette." We discuss the ecological and biogeochemical effects high pH conditions impose on fresh waters and suggest a means by which freshwater diatoms such as F. crotonensis may evade high pH stress to survive in a "basified" future.

12.
Water Res ; 226: 119260, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279611

RESUMEN

Multiple stressors are continuously deteriorating surface waters worldwide, posing many challenges for their conservation and restoration. Combined effect types of multiple stressors range from single-stressor dominance to complex interactions. Identifying prevalent combined effect types is critical for environmental management, as it helps to prioritise key stressors for mitigation. However, it remains unclear whether observed single and combined stressor effects reflect true ecological processes unbiased by sample size and length of stressor gradients. Therefore, we examined the role of sample size and stressor gradient lengths in 158 paired-stressor response cases with over 120,000 samples from rivers, lakes, transitional and marine ecosystems around the world. For each case, we split the overall stressor gradient into two partial gradients (lower and upper) and investigated associated changes in single and combined stressor effects. Sample size influenced the identified combined effect types, and stressor interactions were less likely for cases with fewer samples. After splitting gradients, 40 % of cases showed a change in combined effect type, 30 % no change, and 31 % showed a loss in stressor effects. These findings suggest that identified combined effect types may often be statistical artefacts rather than representing ecological processes. In 58 % of cases, we observed changes in stressor effect directions after the gradient split, suggesting unimodal stressor effects. In general, such non-linear responses were more pronounced for organisms at higher trophic levels. We conclude that observed multiple stressor effects are not solely determined by ecological processes, but also strongly depend on sampling design. Observed effects are likely to change when sample size and/or gradient length are modified. Our study highlights the need for improved monitoring programmes with sufficient sample size and stressor gradient coverage. Our findings emphasize the importance of adaptive management, as stress reduction measures or further ecosystem degradation may change multiple stressor-effect relationships, which will then require associated changes in management strategies.


Asunto(s)
Ecosistema , Lagos , Océanos y Mares , Ríos , Tamaño de la Muestra
13.
Sci Total Environ ; 852: 158383, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36057302

RESUMEN

In addition to obvious negative effects on water quality in eutrophic aquatic ecosystems, recent work suggests that cyanobacterial harmful algal blooms (CHABs) also impact air quality via emissions carrying cyanobacterial cells and cyanotoxins. However, the environmental controls on CHAB-derived aerosol and its potential public health impacts remain largely unknown. Accordingly, the aims of this study were to 1) investigate the occurrence of microcystins (MC) and putatively toxic cyanobacterial communities in particulate matter ≤ 2.5 µm in diameter (PM2.5), 2) elucidate environmental conditions promoting their aerosolization, and 3) identify associations between CHABs and PM2.5 concentrations in the airshed of the Chowan River-Albemarle Sound, an oligohaline, eutrophic estuary in eastern North Carolina, USA. In summer 2020, during peak CHAB season, continuous PM2.5 samples and interval water samples were collected at two distinctive sites for targeted analyses of cyanobacterial community composition and MC concentration. Supporting air and water quality measurements were made in parallel to contextualize findings and permit statistical analyses of environmental factors driving changes in CHAB-derived aerosol. MC concentrations were low throughout the study, but a CHAB dominated by Dolichospermum occurred from late June to early August. Several aquatic CHAB genera recovered from Chowan River surface water were identified in PM2.5 during multiple time points, including Anabaena, Aphanizomenon, Dolichospermum, Microcystis, and Pseudanabaena. Cyanobacterial enrichment in PM2.5 was indistinctive between subspecies, but at one site during the early bloom, we observed the simultaneous enrichment of several cyanobacterial genera in PM2.5. In association with the CHAB, the median PM2.5 mass concentration increased to 8.97 µg m-3 (IQR = 5.15), significantly above the non-bloom background of 5.35 µg m-3 (IQR = 3.70) (W = 1835, p < 0.001). Results underscore the need for highly resolved temporal measurements to conclusively investigate the role that CHABs play in regional air quality and respiratory health risk.


Asunto(s)
Cianobacterias , Microcistinas , Microcistinas/análisis , Estuarios , Lagos/microbiología , Ecosistema , Floraciones de Algas Nocivas , Material Particulado/análisis
15.
Water Res ; 214: 118215, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35228039

RESUMEN

Nutrient storage is considered a critical strategy for algal species to adapt to a fluctuating nutrient supply. Luxury phosphorus (P) uptake into storage of polyphosphate extends the duration of cyanobacterial dominance and their blooms under P deficiency. However, it is unclear whether nitrogen (N) storage in the form of cyanophycin supports persistent cyanobacterial dominance or blooms in the tropics where N deficiency commonly occurs in summer. In this study, we examined genes for cyanophycin synthesis and degradation in Raphidiopsis raciborskii, a widespread and dominant cyanobacterium in tropical waters; and detected the cyanophycin accumulation under fluctuating N concentrations and its ecological role in the population dynamics of the species. The genes for cyanophycin synthesis (cphA) and degradation (cphB) were highly conserved in 21 out of 23 Raphidiopsis strains. This suggested that the synthesis and degradation of cyanophycin are evolutionarily conserved to support the proliferation of R. raciborskii in N-fluctuating and/or deficient conditions. Isotope 15N-NaNO3 labeling experiments showed that R. raciborskii QDH7 always commenced to synthesize and accumulate cyanophycin under fluctuating N conditions, regardless of whether exogenous N was deficient. When the NO3--N concentration exceeded 1.2 mg L-1, R. raciborskii synthesized cyanophycin primarily through uptake of 15N-NaNO3. However, when the NO3--N concentration was below 1.0 mg L-1, cyanophycin-based N was derived from unlabeled N2, as evidenced by increased dinitrogenase activity. Cells grown under NO3--N < 1.0 mg L-1 had lower cyanophycin accumulation rates than cells grown under NO3--N > 1.2 mg L-1. Our field investigation in a large tropical reservoir underscored the association between cyanophycin content and the population dynamics of R. raciborskii. The cyanophycin content was high in N-sufficient (NO3--N > 0.45 mg L-1) periods, and decreased in N-deficient summer. In summer, R. raciborskii sustained a relatively high biomass and produced few heterocysts (< 1%). These findings indicated that cyanophycin-released N, rather than fixed N, supported persistent R. raciborskii blooms in N-deficient seasons. Our study suggests that the highly adaptive strategy in a N2-fixing cyanobacterial species makes mitigating its bloom more difficult than previously assumed.

16.
Glob Chang Biol ; 28(7): 2327-2340, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34995391

RESUMEN

Algal blooms (ABs) in inland lakes have caused adverse ecological effects, and health impairment of animals and humans. We used archived Landsat images to examine ABs in lakes (>1 km2 ) around the globe over a 37-year time span (1982-2018). Out of the 176032 lakes with area >1 km2 detected globally, 863 were impacted by ABs, 708 had sufficiently long records to define a trend, and 66% exhibited increasing trends in frequency ratio (FRQR, ratio of the number of ABs events observed in a year in a given lake to the number of available Landsat images for that lake) or area ratio (AR, ratio of annual maximum area covered by ABs observed in a lake to the surface area of that lake), while 34% showed a decreasing trend. Across North America, an intensification of ABs severity was observed for FRQR (p < .01) and AR (p < .01) before 1999, followed by a decrease in ABs FRQR (p < .01) and AR (p < .05) after the 2000s. The strongest intensification of ABs was observed in Asia, followed by South America, Africa, and Europe. No clear trend was detected for the Oceania. Across climatic zones, the contributions of anthropogenic factors to ABs intensification (16.5% for fertilizer, 19.4% for gross domestic product, and 18.7% for population) were slightly stronger than climatic drivers (10.1% for temperature, 11.7% for wind speed, 16.8% for pressure, and for 11.6% for rainfall). Collectively, these divergent trends indicate that consideration of anthropogenic factors as well as climate change should be at the forefront of management policies aimed at reducing the severity and frequency of ABs in inland waters.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Animales , Cambio Climático , Monitoreo del Ambiente/métodos , Lagos , Viento
17.
Natl Sci Rev ; 9(1): nwab207, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35070333

RESUMEN

China has made a concerted effort to successfully improve water quality of rivers, but lake water quality has not improved. Lakes require controls on both catchment external nutrient loads and in-lake internal loads, where nature-based solutions are coupled with engineered systems to achieve the United Nations Sustainable Development Goals (SDGs).

18.
Harmful Algae ; 110: 102127, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887007

RESUMEN

Harmful cyanobacterial blooms (CyanoHABs) are expanding world-wide, adversely affecting aquatic food production, recreational and tourism activities and safe drinking water supplies. China's inland waters have been increasingly threatened by CyanoHABs during the past several decades. The environmental factors controlling CyanoHABs are highly variable in space and time in China due to significant variations in climate, geography, geological and geochemical conditions among its many regions. Here, we synthesize diverse examples among Chinese water bodies regarding interactive effects of anthropogenic, climatic and geographic drivers influencing CyanoHAB potentials and dynamics in lakes and reservoirs; in order to provide a perspective and integrative approach to mitigating CyanoHABs. In China's many shallow water bodies, water quality is highly susceptible to human activity and to changing climatic and hydrological conditions, when compared to deeper lakes. Rapid increases in population, economic activity, and wastewater have accelerated CyanoHABs in China since 1980s, especially in the heavily urbanized, agricultural and industrial regions in the middle and lower Yangtze River basins. Climatic changes have provided an additional catalyst for expansion of CyanoHABs. In particular, rising spring temperatures have accelerated the onset and proliferation of Microcystis spp, blooms in the middle and lower reaches of Yangtze River basin. Large hydroelectric and water supply projects, like the Three Gorges Reservoir (TGR), have altered hydrological regimes, and have led to an increase of CyanoHABs in reservoirs and tributaries due to increases in water residence times. Manipulating water level fluctuations in the TGR may prove useful for controlling CyanoHAB in its tributary bays. Overall,CyanoHAB mitigation strategies will have to incorporate both N and P input reductions in these shallow systems. Furthermore, nutrient reduction strategies must consider climate change-induced increases in extreme weather events, including more intense rainfall and protracted heat waves and droughts, which can extend the magnitudes and duration of CyanoHABs. Ensuring the maintenance of natural hydrologic connectivity between lakes and rivers is of utmost importance in mitigating CyanoHABs throughout China.


Asunto(s)
Cianobacterias , Cambio Climático , Lagos , Temperatura , Calidad del Agua
19.
Toxins (Basel) ; 13(1)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435505

RESUMEN

Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed.


Asunto(s)
Toxinas Bacterianas/toxicidad , Cianobacterias/fisiología , Floraciones de Algas Nocivas , Lagos/microbiología , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clorofila A/química , Great Lakes Region , Lagos/química
20.
Environ Sci Technol ; 55(1): 44-64, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33334098

RESUMEN

The global expansion of harmful cyanobacterial blooms (CyanoHABs) poses an increasing threat to public health. CyanoHABs are characterized by the production of toxic metabolites known as cyanotoxins. Human exposure to cyanotoxins is challenging to forecast, and perhaps the least understood exposure route is via inhalation. While the aerosolization of toxins from marine harmful algal blooms (HABs) has been well documented, the aerosolization of cyanotoxins in freshwater systems remains understudied. In recent years, spray aerosol (SA) produced in the airshed of the Laurentian Great Lakes (United States and Canada) has been characterized, suggesting that freshwater systems may impact atmospheric aerosol loading more than previously understood. Therefore, further investigation regarding the impact of CyanoHABs on human respiratory health is warranted. This review examines current research on the incorporation of cyanobacterial cells and cyanotoxins into SA of aquatic ecosystems which experience HABs. We present an overview of cyanotoxin fate in the environment, biological incorporation into SA, existing data on cyanotoxins in SA, relevant collection methods, and adverse health outcomes associated with cyanotoxin inhalation.


Asunto(s)
Contaminación del Aire , Cianobacterias , Canadá , Ecosistema , Floraciones de Algas Nocivas , Humanos , Microcistinas/análisis , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...